Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Gut Pathog ; 15(1): 21, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2325712

ABSTRACT

Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.

2.
Application of Natural Products in SARS-CoV-2 ; : 273-292, 2022.
Article in English | Scopus | ID: covidwho-2262170

ABSTRACT

The emerging human pathogenic viruses, including the recently emerged severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), have markedly affected the human health and have become a challenge for researchers worldwide. Antibiotic therapy and existing vaccines have reduced the pandemic burden to some extent. However, there is still need for efficient treatment, vaccination, and antiviral agents to control the pandemic. This chapter illustrates the role of bacteriophage in bacterial infections, SARS-COV-2 infected patients, biological activities of phages, phage display method, phages as potential inducers of antiviral immunity, phage-based vaccines, CRISPR and phage-based SARS-CoV-2 vaccines, and possible advantages of phage-based vaccines. It is concluded that phages have considerable breadth in the SARS-CoV-2 pandemic and offer many substantial advantages, such as clearing respiratory bacterial infections, which significantly reduce the burden of mortalities. Phage plays a vital role in triggering antiviral immunity by inducing cytokines such as IFN-α and IL-12. It suggests the role in driving antiviral immunity, triggering TLR3-dependent pattern recognition receptors, inhibiting TNF-driving type I IFN, inducing antiviral immunity through upregulation of the expression of defensin in IL-2, and encouraging a marked upregulation of gene hBD2 that induces virucidal effects, thus playing a key role in anti-SARS-COV-2 immunity. Moreover, phages have been presented as an alternative universal adjuvant-free nano-vaccine platform in which single-phage scaffolds are used to incorporate multiple targets. © 2023 Elsevier Inc. All rights reserved.

3.
Ann Clin Microbiol Antimicrob ; 22(1): 18, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2272518

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant clinical problem, given the lack of therapeutic options. The CRKP strains have emerged as an essential worldwide healthcare issue during the last 10 years. Global expansion of the CRKP has made it a significant public health hazard. We must consider to novel therapeutic techniques. Bacteriophages are potent restorative cases against infections with multiple drug-resistant bacteria. The Phages offer promising prospects for the treatment of CRKP infections. OBJECTIVE: In this study, a novel K. pneumoniae phage vB_KshKPC-M was isolated, characterized, and sequenced, which was able to infect and lyse Carbapenem-resistant K. pneumoniae host specifically. METHODS: One hundred clinical isolates of K. pneumoniae were collected from patients with COVID-19 associated with ventilator-associated acute pneumonia hospitalized at Shahid Beheshti Hospital, Kashan, Iran, from 2020 to 2021. Initially, all samples were cultured, and bacterial isolates identified by conventional biochemical tests, and then the ureD gene was used by PCR to confirm the isolates. The Antibiotic susceptibility test in the disc diffusion method and Minimum inhibitory concentrations for Colistin was done and interpreted according to guidelines. Phenotypic and molecular methods determined the Carbapenem resistance of isolates. The blaKPC, blaNDM, and blaOXA-23 genes were amplified for this detection. Biofilm determination of CRKP isolates was performed using a quantitative microtiter plate (MTP) method. The phage was isolated from wastewater during the summer season at a specific position from Beheshti Hospital (Kashan, Iran). The sample was processed and purified against the bacterial host, a CRKP strain isolated from a patient suffering from COVID-19 pneumoniae and resistance to Colistin with high potency for biofilm production. This isolate is called Kp100. The separated phages were diluted and titration by the double overlay agar plaque assay. The separate Phage is concentrated with 10% PEG and stored at -80 °C until use. The phage host range was identified by the spot test method. The purified phage morphology was determined using a transmission electron microscope. The phage stability tests (pH and temperature) were analyzed. The effect of cationic ions on phage adsorption was evaluated. The optimal titer of bacteriophage was determined to reduce the concentration of the CRKP strain. One-step growth assays were performed to identify the purified phage burst's latent cycle and size. The SDS-PAGE was used for phage proteins analysis. Phage DNA was extracted by chloroform technique, and the whole genome of lytic phage was sequenced using Illumina HiSeq technology (Illumina, San Diego, CA). For quality assurance and preprocessing, such as trimming, Geneious Prime 2021.2.2 and Spades 3.9.0. The whole genome sequence of the lytic phage is linked to the GenBank database accession number. RASTtk-v1.073 was used to predict and annotate the ORFs. Prediction of ORF was performed using PHASTER software. ResFinder is used to assess the presence of antimicrobial resistance and virulence genes in the genome. The tRNAs can-SE v2.0.6 is used to determine the presence of tRNA in the genome. Linear genome comparisons of phages and visualization of coding regions were performed using Easyfig 2.2.3 and Mauve 2.4.0. Phage lifestyles were predicted using the program PHACTS. Phylogenetic analysis and amino acid sequences of phage core proteins, such as the major capsid protein. Phylogenies were reconstructed using the Neighbor-Joining method with 1000 bootstrap repeat. HHpred software was used to predict depolymerase. In this study, GraphPad Prism version 9.1 was used for the statistical analysis. Student's t-test was used to compare the sets and the control sets, and the significance level was set at P ≤ 0.05. RESULTS: Phage vB_KshKPC-M is assigned to the Siphoviridae, order Caudovirales. It was identified as a linear double-stranded DNA phage of 54,378 bp with 50.08% G + C content, had a relatively broad host range (97.7%), a short latency of 20 min, and a high burst size of 260 PFU/cell, and was maintained stable at different pH (3-11) and temperature (45-65 °C). The vB_KshKPC-M genome contains 91 open-reading frames. No tRNA, antibiotic resistance, toxin, virulence-related genes, or lysogen-forming gene clusters were detected in the phage genome. Comparative genomic analysis revealed that phage vB_KshKPC-M has sequence similarity to the Klebsiella phages, phage 13 (NC_049844.1), phage Sushi (NC_028774.1), phage vB_KpnD_PeteCarol (OL539448.1) and phage PWKp14 (MZ634345.1). CONCLUSION: The broad host range and antibacterial activity make it a promising candidate for future phage therapy applications. The isolated phage was able to lyse most of the antibiotic-resistant clinical isolates. Therefore, this phage can be used alone or as a phage mixture in future studies to control and inhibit respiratory infections caused by these bacteria, especially in treating respiratory infections caused by resistant strains in sick patients.


Subject(s)
Bacteriophages , COVID-19 , Klebsiella Infections , Klebsiella pneumoniae , Humans , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , COVID-19/complications , Genomics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , Phylogeny , Ventilators, Mechanical
4.
Microbiol Spectr ; 11(1): e0403022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213894

ABSTRACT

In recent years, Stenotrophomonas maltophilia (S. maltophilia) has become an important pathogen of clinically acquired infections accompanied by high pathogenicity and high mortality. Moreover, infections caused by multidrug-resistant S. maltophilia have emerged as a serious challenge in clinical practice. Bacteriophages are considered a promising alternative for the treatment of S. maltophilia infections due to their unique antibacterial mechanism and superior bactericidal ability compared with traditional antibiotic agents. Here, we reported a new phage BUCT700 that has a double-stranded DNA genome of 43,214 bp with 70% GC content. A total of 55 ORFs and no virulence or antimicrobial resistance genes were annotated in the genome of phage BUCT700. Phage BUCT700 has a broad host range (28/43) and can lyse multiple ST types of clinical S. maltophilia (21/33). Furthermore, bacteriophage BUCT700 used the Type IV fimbrial biogenesis protein PilX as an adsorption receptor. In the stability test, phage BUCT700 showed excellent thermal stability (4 to 60°C) and pH tolerance (pH = 4 to 12). Moreover, phage BUCT700 was able to maintain a high titer during long-term storage. The adsorption curve and one-step growth curve showed that phage BUCT700 could rapidly adsorb to the surface of S. maltophilia and produce a significant number of phage virions. In vivo, BUCT700 significantly increased the survival rate of S. maltophilia-infected Galleria mellonella (G. mellonella) larvae from 0% to 100% within 72 h, especially in the prophylactic model. In conclusion, these findings indicate that phage BUCT700 has promising potential for clinical application either as a prophylactic or therapeutic agent. IMPORTANCE The risk of Stenotrophomonas maltophilia infections mediated by the medical devices is exacerbated with an increase in the number of ICU patients during the Corona Virus Disease 2019 (COVID-19) epidemic. Complications caused by S. maltophilia infections could complicate the state of an illness, greatly extending the length of hospitalization and increasing the financial burden. Phage therapy might be a potential and promising alternative for clinical treatment of multidrug-resistant bacterial infections. Here, we investigated the protective effects of phage BUCT700 as prophylactic and therapeutic agents in Galleria mellonella models of infection, respectively. This study demonstrates that phage therapy can provide protection in targeting S. maltophilia-related infection, especially as prophylaxis.


Subject(s)
Bacteriophages , COVID-19 , Moths , Stenotrophomonas maltophilia , Animals , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Stenotrophomonas maltophilia/genetics , Larva/microbiology , Anti-Bacterial Agents/pharmacology
6.
Front Cell Infect Microbiol ; 12: 1100695, 2022.
Article in English | MEDLINE | ID: covidwho-2198727

Subject(s)
COVID-19 , SARS-CoV-2 , Humans
7.
Viruses ; 14(12)2022 11 23.
Article in English | MEDLINE | ID: covidwho-2123874

ABSTRACT

Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body. Bacteriophages are promising candidates as potential regulators of the microbiota. In the present study, two complex phage cocktails targeting multiple bacterial species were used in the rehabilitation of thirty patients after COVID-19, and the effectiveness of the bacteriophages against the clinical strain of Klebsiella pneumoniae was evaluated for the first time using real-time visualization on a 3D Cell Explorer microscope. Application of phage cocktails for two weeks showed safety and the absence of adverse effects. An almost threefold statistically significant decrease in the anaerobic imbalance ratio, together with an erythrocyte sedimentation rate (ESR), was detected. This work will serve as a starting point for a broader and more detailed study of the use of phages and their effects on the microbiome.


Subject(s)
Bacterial Infections , Bacteriophages , COVID-19 , Microbiota , Humans , COVID-19/therapy , Bacteria
8.
Advanced Therapeutics ; 5(8), 2022.
Article in English | EMBASE | ID: covidwho-2007088

ABSTRACT

Cancer gene therapy based on various gene delivery vectors has some potential but also has obvious disadvantages. In this study, a new M13 phage-based oncolytic virus is constructed that carried the RGD peptides to target tumor cells and the 3C gene of Seneca Valley virus (SVV) preceded by a eukaryotic initial transcriptional region (ITR) to transcribe an oncolytic protein to kill tumor cells. Recombinant virus particles of 1200 nm in length are obtained in large quantities by transfecting the recombinant M13 phage plasmid into the host BL2738 and are investigated in vitro in tumor cells and in vivo in tumor-bearing mice to evaluate their antitumor effect. The experiments using Hela cells confirm that the engineered M13 phage can target and enter Hela cells, and express the SVV 3C protein, resulting in apoptosis of target cells by upregulating the expression of caspase 3. Furthermore, the results of experiments in vivo also show that the recombinant phage significantly inhibits the enhanced tumor volume in nude mice compared to the control groups. The M13 phage may be engineered to fuse with a variety of oncolytic proteins to inhibit the growth of tumor cells in the future, providing a promising phage-based targeted oncolytic reagent.

9.
EBioMedicine ; 81: 104113, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1977200

ABSTRACT

The human gastrointestinal tract harbours an abundance of viruses, collectively known as the gut virome. The gut virome is highly heterogeneous across populations and is linked to geography, ethnicity, diet, lifestyle, and urbanisation. The currently known function of the gut virome varies greatly across human populations, and much remains unknown. We review current literature on the human gut virome, and the intricate trans-kingdom interplay among gut viruses, bacteria, and the mammalian host underlying health and diseases. We summarise evidence on the use of the gut virome as diagnostic markers and a therapeutic target. We shed light on novel avenues of microbiome-inspired diagnosis and therapies. We also review pre-clinical and clinical studies on gut virome-rectification-based therapies, including faecal microbiota transplantation, faecal virome transplantation, and refined phage therapy. Our review suggests that future research effort should focus on unravelling the mechanisms exerted by gut viruses/phages in human pathophysiology, and on developing phage-prompted precision therapies.


Subject(s)
Bacteriophages , Microbiota , Viruses , Animals , Bacteria , Humans , Mammals , Virome
10.
Viruses ; 14(6)2022 05 28.
Article in English | MEDLINE | ID: covidwho-1911612

ABSTRACT

The year 2020 marked 15 years of the Phage Therapy Unit in Poland, the inception of which took place just one year after Poland's accession to the European Union (2004). At first sight, it is hard to find any connection between these two events, but in fact joining the European Union entailed the need to adapt the regulatory provisions concerning experimental treatment in humans to those that were in force in the European Union. These changes were a solid foundation for the first phage therapy center in the European Union to start its activity. As the number of centers conducting phage therapy in Europe and in the world constantly and rapidly grows, we want to grasp the opportunity to take a closer look at the over 15-year operation of our site by analyzing its origins, legal aspects at the local and international levels and the impressive number and diversity of cases that have been investigated and treated during this time. This article is a continuation of our work published in 2020 summarizing a 100-year history of the development of phage research in Poland.


Subject(s)
Bacteriophages , Phage Therapy , Europe , European Union , Humans , Poland
11.
Microb Pathog ; 164: 105442, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1701213

ABSTRACT

In 2019, the world faced a serious health challenge, the rapid spreading of a life-threatening viral pneumonia, coronavirus disease 2019 (COVID-19) caused by a betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 2022 WHO statistics shows more than 5.6 million death and about 350 million infection by SARS-CoV-2. One of the life threatening aspects of COVID-19 is secondary infections and reduced efficacy of antibiotics against them. Since the beginning of COVID-19 many researches have been done on identification, treatment, and vaccine development. Bacterial viruses (bacteriophages) could offer novel approaches to detect, treat and control COVID-19. Phage therapy and in particular using phage cocktails can be used to control or eliminate the bacterial pathogen as an alternative or complementary therapeutic agent. At the same time, phage interaction with the host immune system can regulate the inflammatory response. In addition, phage display and engineered synthetic phages can be utilized to develop new vaccines and antibodies, stimulate the immune system, and elicit a rapid and well-appropriate defense response. The emergence of SARS-CoV-2 new variants like delta and omicron has proved the urgent need for precise, efficient and novel approaches for vaccine development and virus detection techniques in which bacteriophages may be one of the plausible solutions. Therefore, phages with similar morphology and/or genetic content to that of coronaviruses can be used for ecological and epidemiological modeling of SARS-CoV-2 behavior and future generations of coronavirus, and in general new viral pathogens. This article is a comprehensive review/perspective of potential applications of bacteriophages in the fight against the present pandemic and the post-COVID era.


Subject(s)
Bacteriophages , COVID-19 , Pneumonia, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , SARS-CoV-2
12.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1674755

ABSTRACT

Despite numerous advances in personalized phage therapy, smooth logistics are challenging, particularly for multidrug-resistant Gram-negative bacterial infections requiring high numbers of specific lytic phages. We conducted this study to pave the way for efficient logistics for critically ill patients by (1) closely examining and improving a current pipeline under realistic conditions, (2) offering guidelines for each step, leading to safe and high-quality phage supplies, and (3) providing a tool to evaluate the pipeline's efficiency. Due to varying stipulations for quality and safety in different countries, we focused the pipeline on all steps up to a required phage product by a cell-free extract system. The first of three study runs included patients with respiratory bacterial infections from four intensive care units, and it revealed a cumulative time of up to 23 days. Ultimately, adjustment of specific set points of the vulnerable components of the pipeline, phage isolation, and titration increased the pipeline's efficiency by 15% and decreased the maximum required time to 13 days. We present a site-independent practical approach to establish and optimize pipelines for personalized phage delivery, the co-organization of pipeline components between different institutions, non-binding guidelines for every step, and an efficiency check for phage laboratories.

13.
Infect Disord Drug Targets ; 22(6): 22-28, 2022.
Article in English | MEDLINE | ID: covidwho-1650109

ABSTRACT

Bacteriophages or phages are the most abundant organisms in the biosphere. Scientists considered phages an appropriate tool for understanding molecular biology, horizontal gene transfer vectors, stimulants of bacterial evolution, a source of diagnostic and genetic tools, and new therapeutic agents. Therefore, studying the biology of phages and their interactions with their hosts is crucial to gaining a deeper knowledge of biological systems. Numerous studies confirmed that bacteriophages are a genetic tool with high potential for treating infectious diseases, including bacterial, fungal, and viral infections. Therefore, phages may be used as an appropriate therapeutic target against some viruses, such as COVID-19 infection. In this study, we describe the role of phages in modulating the host immune system, the production of specific antibodies against the COVID-19 virus by the host immune system, and the minimization of damage caused by the COVID-19 virus to the host. Also, the present study expresses our understanding of the prospect of phage therapy as an adjunctive therapy.


Subject(s)
Bacteriophages , COVID-19 , Phage Therapy , Antiviral Agents , Bacteria , Humans
14.
Journal of Biological Researches ; 27(1):6-14, 2021.
Article in English | Academic Search Complete | ID: covidwho-1597560

ABSTRACT

The COVID-19 pandemic, which started in the beginning of 2020 was triggered by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, severely affected various sectors, especially health. The effect of COVID-19 on patients is exacerbated by bacterial co-infections and secondary bacterial infections. There are few studies on how bacterial co-infections and secondary bacterial infections worsen COVID-19 patients, including in Indonesia. Therefore, it is necessary to update and summarize the understanding of bacterial infections characteristics to help optimize the diagnosis, prevention, and treatment decisions. Antibiotics have been used in COVID-19 patients to treat bacterial infections to date, which could contribute to antimicrobial resistance in the future. The review's objective is to summarize bacterial infections in COVID-19 patients and several possible treatments, including antibiotics, phage therapy, probiotics/prebiotics, and nanomedicine for antimicrobial peptides (AMPs) delivery. [ FROM AUTHOR] Copyright of Journal of Biological Researches is the property of Indonesian Biological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

15.
Current Respiratory Medicine Reviews ; 17(4):201-208, 2021.
Article in English | Web of Science | ID: covidwho-1581530

ABSTRACT

Viral respiratory infections are a leading cause of illness and mortality in all age groups worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has spread throughout the world, igniting the twenty-first century's deadliest pandemic. Research has shown that phages, which are bacterial viruses, can help treat viral infections with the effect on the immune system and their antiviral activity. Phages have specific activity and affect only the target without any side effects on other parts of the human body. Human phage-related diseases have not been reported yet;therefore, phages can be a very safe treatment, especially in many viral infections. The results of clinical studies have a promising future regarding the use of phages. It is possible that the phages display technique aided in the production of SARS-CoV-2 specific antibodies against its viral protein, which prevented the virus from binding or replicating and preventing secondary microbial infections, which have been linked to many patient deaths. Furthermore, an effective antiviral vaccine can be produced by using the same technique. Given the growing number of coronaviruses cases around the world, in the present paper, we review the possible mechanisms of phages against the COVID-19 disease and the method that may be a solution to eliminate the virus.

16.
Indian Journal of Pharmaceutical Sciences ; 83(6):1081-1093, 2021.
Article in English | Web of Science | ID: covidwho-1579180

ABSTRACT

The Coronavirus Disease 2019 pandemic has wreaked havoc on global health infrastructure and personnel, resulting in enormous misery, deaths and economic stagnation. Severe Acute Respiratory Syndrome-Coronavirus-2 respiratory infections are frequently worsened by secondary bacterial infections and co-infections due to prolonged hospitalizations;resulting in irreversible lung damage, respiratory failure, cardiac arrest and death. The high mortality rate of Coronavirus Disease 2019 patients is primarily due to multi drug resistant microbial (viral/bacterial) infections, unrestrained inflammatory response and delayed antibody production. The superfluous use of broad spectrum antimicrobial drugs as the last resort has further aggravated the Coronavirus Disease 2019 crisis by contributing to the global antimicrobial resistance. To overcome these hurdles for effective treatment of Coronavirus Disease 2019 and associated bacterial infections, phage therapy seems to be promising due to a lack of effective antiviral drugs and antimicrobial-resistant superadded bacterial infections. Prior studies suggest that when phages, their cocktails and endolysins are administered alone or in synergism with antibiotics through nebulization or through intravenous and intraperitoneal injections have exhibited greater antibacterial potential to combat even Multidrug-Resistant pulmonary bacterial infections. Bacteriophages and phagicin have also shown potent antiviral activity by triggering the production of antiviral cytokines. Many studies have also indicated phage mediated antiviral immunity by lowering Nuclear Factor Kappa B activation and reactive oxygen species production. Phage display technique can serve as a promising approach for Coronavirus Disease 2019 vaccine development through production of Severe Acute Respiratory Syndrome-Coronavirus-2 specific antibodies. This review illustrates the potential of phage therapy as a double edged sword to combat both Coronavirus Disease 2019 as well as associated bacterial infections.

17.
Antibiotics (Basel) ; 10(6)2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1553954

ABSTRACT

The increase of multiresistance in bacteria and the shortage of new antibiotics in the market is becoming a major public health concern. The World Health Organization (WHO) has declared critical priority to develop new antimicrobials against three types of bacteria: carbapenem-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant and ESBL-producing Enterobacteriaceae. Phage therapy is a promising alternative therapy with renewed research in Western countries. This field includes studies in vitro, in vivo, clinical trials and clinical cases of patients receiving phages as the last resource after failure of standard treatments due to multidrug resistance. Importantly, this alternative treatment has been shown to be more effective when administered in combination with antibiotics, including infections with biofilm formation. This review summarizes the most recent studies of this strategy in animal models, case reports and clinical trials to deal with infections caused by resistant A. baumannii, K. pneumoniae, E. coli, and P. aeruginosa strains, as well as discusses the main limitations of phage therapy.

18.
Front Cell Infect Microbiol ; 11: 635597, 2021.
Article in English | MEDLINE | ID: covidwho-1362322

ABSTRACT

Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Anti-Bacterial Agents , Bacteria , Humans
19.
Antibiotics (Basel) ; 10(5)2021 May 11.
Article in English | MEDLINE | ID: covidwho-1241236

ABSTRACT

The irrational use of antibiotics has led to a high emergence of multi-drug resistant (MDR) bacteria. The traditional overuse of antibiotics in the animal feed industry plays a crucial role in the emergence of these pathogens that pose both economic and health problems. In addition, antibiotics have also recently experienced an increase to treat companion animal infections, promoting the emergence of MDR bacteria in pets, which can reach humans. Phages have been proposed as an alternative for antibiotics for the treatment of livestock and companion animal infections due to their multiple advantages as adaptative drugs, such as their ability to evolve, to multiply at the site of infections, and their high specificity. Moreover, phage-derived enzymes may also be an interesting approach. However, the lack of regulation for this type of pharmaceutical hinders its potential commercialization. In this review, we summarize the main recent studies on phage therapy in livestock and companion animals, providing an insight into current advances in this area and the future of treatments for bacterial infections.

20.
Front Microbiol ; 12: 653107, 2021.
Article in English | MEDLINE | ID: covidwho-1170099

ABSTRACT

The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, and in the absence of available treatments, this has become a major global threat. In the middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, which has challenged the whole world, the emergence of MDR bacteria is increasing due to prophylactic administration of antibiotics to intensive care unit patients to prevent secondary bacterial infections. This is just an example underscoring the need to seek alternative treatments against MDR bacteria. To this end, phage therapy has been proposed as a promising tool. However, further research in the field is mandatory to assure safety protocols and to develop appropriate regulations for its use in clinics. This requires investing more in such non-conventional or alternative therapeutic approaches, to develop new treatment regimens capable of reducing the emergence of MDR and preventing future global public health concerns that could lead to incalculable human and economic losses.

SELECTION OF CITATIONS
SEARCH DETAIL